Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JMIR Bioinform Biotech ; 4: e42700, 2023.
Article in English | MEDLINE | ID: covidwho-2215079

ABSTRACT

Background: Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective: The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results: Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions: In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.

2.
Microsc Microanal ; : 1-25, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2016486

ABSTRACT

In this study, we examined the cellular infectivity and ultrastructural changes due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the various cells of bronchoalveolar fluid (BALF) from intubated patients of different age groups (≥60 years and <60 years) and with common comorbidities such as diabetes, liver and kidney diseases, and malignancies. BALF of 79 patients (38 cases >60 and 41 cases <60 years) were studied by light microscopy, immunofluorescence, scanning, and transmission electron microscopy to evaluate the ultrastructural changes in the ciliated epithelium, type II pneumocytes, macrophages, neutrophils, eosinophils, lymphocytes, and anucleated granulocytes. This study demonstrated relatively a greater infection and better preservation of subcellular structures in these cells from BALF of younger patients (<60 years compared with the older patients (≥60 years). The different cells of BALF from the patients without comorbidities showed higher viral load compared with the patients with comorbidities. Diabetic patients showed maximum ultrastructural damage in BALF cells in the comorbid group. This study highlights the comparative effect of SARS-CoV-2 infection on the different airway and inflammatory cells of BALF at the subcellular levels among older and younger patients and in patients with comorbid conditions.

4.
Front Immunol ; 12: 693938, 2021.
Article in English | MEDLINE | ID: covidwho-1523694

ABSTRACT

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host Microbial Interactions/immunology , Animals , Human Body , Humans , Lung/immunology , Lung/virology , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
5.
Expert Rev Mol Med ; 23: e7, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1338496

ABSTRACT

Recent epidemiological studies analysing sex-disaggregated patient data of coronavirus disease 2019 (COVID-19) across the world revealed a distinct sex bias in the disease morbidity as well as the mortality - both being higher for the men. Similar antecedents have been known for the previous viral infections, including from coronaviruses, such as severe acute respiratory syndrome (SARS) and middle-east respiratory syndrome (MERS). A sound understanding of molecular mechanisms leading to the biological sex bias in the survival outcomes of the patients in relation to COVID-19 will act as an essential requisite for developing a sex-differentiated approach for therapeutic management of this disease. Recent studies which have explored molecular mechanism(s) behind sex-based differences in COVID-19 pathogenesis are scarce; however, existing evidence, for other respiratory viral infections, viz. SARS, MERS and influenza, provides important clues in this regard. In attempt to consolidate the available knowledge on this issue, we conducted a systematic review of the existing empirical knowledge and recent experimental studies following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The qualitative analysis of the collected data unravelled multiple molecular mechanisms, such as evolutionary and genetic/epigenetic factors, sex-linkage of viral host cell entry receptor and immune response genes, sex hormone and gut microbiome-mediated immune-modulation, as the possible key reasons for the sex-based differences in patient outcomes in COVID-19.


Subject(s)
COVID-19/epidemiology , Gastrointestinal Microbiome/immunology , Immunity/genetics , Pandemics , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Epigenesis, Genetic , Female , Humans , Male , Receptors, Virus/genetics , Sex Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL